Efficient Linearized Photonic Crystal Semiconductor Optical Modulators

John O'Brien July 31, 2001

Basic Modulator Idea

The modulator works by modulating the effective index of the waveguide mode in a Mach-Zehnder structure. In other words, we are modulating the waveguide dispersion.

We electro-optically modulate the cladding index. Then we take advantage of the steep relationship between the phase of the reflectivity from the core-cladding interface and the wavelength.

Reflectivity phase changes cause a change in the transverse mode profile. The modal index changes as the transverse mode profile expands and contracts.

Transverse resonance condition: the roundtrip phase in the x-direction must be a multiple of 2π

Periodic cladding (1D or 2D)

Phase along the z-direction

$$k\sin\theta \cdot z$$

In one "roundtrip" the phase along z is

$$k\sin\theta(2d\tan\theta) + 2\varphi$$

The phase per unit length is

$$\frac{k\sin\theta(2d\tan\theta) + 2\phi}{2d\tan\theta} = k\sin\theta + \frac{\phi}{d}\cot\theta$$

For complete modulation we want $\Delta kL = \pi$

$$\Delta k = \frac{dk}{dn} \Delta n = \frac{2\pi \Delta n}{\lambda} \sin \theta + \frac{2\pi n \Delta n}{\lambda} \cos \theta \frac{d\theta}{dn} + \frac{d\phi}{dn} \frac{\Delta n}{d} \cot \theta - \frac{\phi}{d} \csc^2 \theta \frac{d\theta}{dn} \Delta n$$

V_{π} Estimate

$$d = 0.16 \, \mu m$$

$$n=3.5$$

$$\phi \sim 85^{\circ}$$

$$L = 1.5 \mu m$$

$$r_{41}$$
=-1.4x10⁻¹⁰ cm/V

$$d\phi/d\lambda = 11^{\circ}/nm$$

 $V_{\pi} = 0.48 \text{ V}$ for field applied over 1 μm

Hierarchy of Structures

1D vertical guiding - This is the simplest implementation. The structure will be thick and therefore require larger voltages.

2D transverse guiding - This design allows the most freedom to design V_π and linearity.

Phase Modulators With One-Dimensionally Periodic Cladding Layers

ω-β in for Guided Mode in Phase Modulator

Normalized Frequency

$$d_{core} = 0.301 \mu m$$

 $d_1 = 0.122 \mu m$
 $d_2 = 0.142 \mu m$
 $n_1 (GaAs) = 3.37$
 $n_2(AlAs) = 2.89$

Normalized Propagation Constant

Mach-Zehnder Implementation Using Two-Dimensional Photonic Crystals

Finite-Difference Time-Domain Calculation of the Amplitude of the Magnetic Field Inside a Photonic Crystal Waveguide

Challenges Presented by Mach-Zehnder Implementation in Photonic Crystals

• Low loss, low reflectivity symmetric Y-branch

• Low loss, low reflectivity waveguide bends

Numerical Tools

• Finite-Difference Time-Domain

10 workstation, 18 processor parallel system linked by MPI

• Finite Element Method

Bandstructure and dispersion relations

Two and three-dimensional field calculations

Optimization Algorithm for Designing Photonic Crystals

position and size of this hole varied

power transmitted optimized here

Powell Algorithm for Multidimensional Optimization

Will find local maxima

Preliminary demonstration varied radius and position of one hole controlling the resonant coupling

Three-Dimensional FDTD
Simulation of a Photonic Crystal
Y-Branch

Approved for public release, distribution unlimited

Angular Input Acceptance

Polar Plot of Coupled Power as a Function of Waveguide Angle

FDTD Calculation of an Optical Pulse Incident on an Angled Photonic Crystal Waveguide

Summary

• Phase modulator with one-dimensional periodic cladding is designed and ready to fabricate.

• The Mach-Zehnder junctions for the two-dimensional photonic crystal amplitude modulator are designed.

• We are working to simplify the photonic crystal waveguide fabrication process by using a buried mask.

